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O
ur new ServoFluid™ Control Bearing (SFCB)

eliminates fluid whirl. Whip, another common

instability, can only be partially addressed by the

SFCB. However, the bearing still offers improvement over

conventional technologies in treating this type of instability

and may be a viable solution, depending on the application.

While we’ve physically tested and demonstrated the

bearing’s effect on whirl and whip in machines ranging from

full-sized compressors to rotor kits, this article provides the

technical and mathematical rigor to substantiate our claims

regarding the stability of this pressurized bearing

technology. The equations related to stability used in this

article were originally jointly developed by Don Bently and

Dr. Agnes Muszynska.

Two principles of SFCB operation
The best way to understand how the SFCB works is to

first review how conventional hydrodynamic and

hydrostatic bearings work. Our bearing exhibits certain

characteristics of both bearing types, but combines them in

an innovative way that gives new and significant

improvements over these other designs.

Fluid-film bearings have historically been classified as

one of two types:

• Hydrodynamic

• Hydrostatic

As these names imply, one bearing – the

hydrodynamic type – relies on dynamic (motion) principles,

as a means of developing the fluid film between the bearing

and its journal. The other bearing type – hydrostatic – relies on

static (no motion) principles where external pressurization

of the lubricant is used to develop a fluid film. The SFCB

combines the effects of both types of bearings.

Hydrodynamic Bearings
The stiffness and damping characteristics of these

bearings [1] are mathematically described by the following

equations:

(1)

(2)

Where:

KBD , DBD are radial stiffness and damping
of the hydrodynamic bearing,
respectively

K1 , D1 are constants

d, c are journal diameter and
diametral clearance, respectively

l is bearing length

η is dynamic viscosity

ε is eccentricity ratio

Ω is rotative speed
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As can be seen, these two

bearing parameters (stiffness

and damping) are coupled to

one another. In other words,

attempts to change the damping

result in changes to the stiffness

and vice-versa. For example,

equations (1) and (2) show that

an attempt to raise the stiffness

by increasing fluid viscosity, η,

will also result in an increase in

damping, since both equations

are directly proportional to η. If

a designer chooses a “perfect”

stiffness for the bearing’s

application, this may result in

non-optimal damping, and vice-

versa. This fundamental

constraint means that bearing

designers must often pursue

compromises, rather than

optimal stiffness and damping for a particular application.

As we will see, this is not a problem for the ServoFluid™

Control Bearing.

Also, note that stiffness is directly proportional to the

shaft’s rotative speed, Ω. This is intuitive in a hydrodynamic

bearing because the dynamic motion (between the bearing

and journal surfaces) is what develops the supporting

wedge. 

Hydrostatic Bearings
The stiffness characteristic of these bearings is

mathematically described by the following equations from

Rowe and O’Donoghue [2]:

(3)

Where:

KBS = stiffness of hydrostatic bearing

Ps = supply pressure 

d = bearing diameter

c = bearing to journal diametral
clearance

l = length of bearing

a = length of a single axial land 

C0 = non-dimensional stiffness based
on bearing geometry (γ) and
pressures (β)

(4)

(5)

(6)

Where:

Pp = Pocket pressure 

n = number of pockets

b = length of single circumferential
land 

The damping of a hydrostatic bearing is described by

the same equation (2) as for a hydrodynamic bearing.

Notice in equation (3) that the stiffness in this type of

bearing is related to Ps, the differential pressure of the

lubricant across the supply and drain ports of the bearing.

This is intuitive as well. We would expect that as we

increase the pressure of the lubricant, we could make the

bearing stiffer. 

ServoFluid™ Control Bearing
The ServoFluid™ Control Bearing combines the

stiffness of hydrodynamic and hydrostatic bearings.

K K KB BS BD= +

Figure 1.
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and is proportional to the supply pressure. As long as the

bearing stiffness is lower than the stiffness of the shaft, it

controls the instability threshold. In that case, an increase in

the bearing’s supply pressure can move the instability

threshold above the operational speed. However, when the

bearing stiffness becomes higher than the stiffness of the

shaft, the increase in the bearing stiffness does not

significantly increase the instability threshold.

After the synchronous solution becomes unstable, the

system experiences self-excited vibration, which can be

described by the same set of equations, but with unbalance

forces neglected. The solution can be found in the form of

harmonic oscillations with unknown frequency of self-

excited vibration, ω. This frequency satisfies the

characteristic equation:

(11)

Direct and Quadrature parts of this equation are as

follows:

(12a)

(12b)

The resulting stiffness is as follows:

(7)

while damping is the same as in a hydrostatic bearing.

Note that the SFCB stiffness characteristics have a

significant stiffness at low eccentricities as in a hydrostatic

bearing, and steeply increasing stiffness close to the wall, as

in a hydrodynamic bearing (Figure 1). Since the hydrostatic

portion of the stiffness of the SFCB is independent of the

fluid viscosity, changes in fluid viscosity can be used as a

means to adjust damping and thereby optimize the

damping-to-stiffness ratio.

Whirl and Whip
In order to describe the influence of the bearing

characteristics on the fluid-induced whirl/whip instability of a

rotor/bearing system, a simple rotor is considered (Figure 2).

The parameters of this system include mass of the

rotor M, stiffness of the shaft Ks, stiffness KB, damping DB,

and average circumferential velocity ratio λ of the fluid-

film bearing. The rotor lateral response is described by the

vector of displacement r = x + jy (x and y are vertical and

horizontal displacements, correspondingly, and j = ).

The vector of shaft bending, r1, and the vector of the journal

displacement, r2, constitute the vector r. The equations

describing the motion of this system are as follows:

(8)

Here a and α are radial and angular coordinates of the

rotor center of mass. The lowest possible rotative speed Ωth

at which the synchronous solution of the system (8)

becomes unstable, is described by the Bently-Muszynska

instability threshold [3]:

(9)

where KB0 is a fluid-film bearing stiffness at the journal

central position (zero eccentricity). According to expression

(7), this stiffness is determined only by the hydrostatic

component:

(10)

Figure 2.
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Equations 12a and 12b are simultaneously satisfied when:

(13a)

or, when:

(13b)

These solutions lead to two distinct types of instability

phenomena. The first is known as fluid whirl and occurs

when the conditions of equation (13a) are met. When whirl

occurs, the bearing stiffness has primary influence on the

instability response. The second type of instability occurs

when the conditions of equation (13b) are met. This leads to

a whip instability. However, an examination of equation

(13b) will show that it can only hold as . In

practice, we never really have an infinitely stiff bearing.

Instead, we see a whip instability emerge as KB >> KS. Whip

occurs when the shaft stiffness provides the primary

influence over the instability response.

1. Whirl

As noted above, whirl occurs when the conditions of

equation (13a) are met. In the whirl regime, the amplitude

of the journal displacement, r2, is much higher than that of

the shaft bending, r1, while the phases are essentially the

same. This indicates a predominantly rigid-body mode of

response, typical for whirl. In other words, the bearing

stiffness tends to dominate the instability response.

By increasing the bearing stiffness KB in equation (9),

we can arbitrarily raise the instability threshold Ωth . This is

precisely why the SFCB eliminates whirl problems –

because bearing stiffness KB can be increased

independent of damping to raise the threshold of

instability above operating rotative speeds, precluding

whirl from ever occurring.The bearing is designed initially with

proper stiffness to locate the instability threshold above

operating speeds. If conditions change for some reason, the

bearing stiffness can be raised in the field by raising the fluid

supply pressure, further increasing the threshold of stability.

2. Whip

We have already noted that when the conditions of

equation (13b) are met, we see a different kind of instability

response, known as whip. We have also noted that although

our bearing can never really become infinitely stiff, its

stiffness can greatly exceed that of the shaft. Essentially,

what equation (13b) tells us is that there is a point at which

increases in bearing stiffness no longer influence the

instability threshold; it is influenced instead by the shaft

stiffness. This is intuitive. As the bearing stiffness becomes

considerably larger than the shaft stiffness, the least stiff

spring in the system (the shaft stiffness) begins to dominate

the response and further increasing the bearing stiffness no

longer influences the response. Figure 2 helps to make this

clear as well. Notice that we effectively have two springs in

series – one governed by the shaft stiffness KS and one

governed by the bearing stiffness KB. If the “bearing” spring

(the one influenced by KB) is replaced with an infinitely stiff

spring (i.e., a straight line), the system still has a spring,

influenced by KS. This is what is shown in equation (13b).

This region in which shaft stiffness dominates the

instability response is known as whip. As we have shown,

raising the bearing stiffness further will not necessarily

control whip problems. Instead, the shaft stiffness must be

addressed, or λ must be reduced, or both. Thus, whip, as a

predominantly rotor-bending mode instability response,

can only be partially controlled by the SFCB.

The SFCB can help with whip problems in the

following ways:

• Axial fluid flow in the SFCB can be increased to
reduce λ.

• It may be possible to install a SFCB in place of an
existing mid-span seal to raise the shaft stiffness KS.

Also, anti-swirl devices can be installed to reduce λ.

Summary
This article showed the principles of operation for both

hydrodynamic and hydrostatic bearing types. It was further

shown that the SFCB exhibits characteristics of both

bearing types. Its stiffness is simply a linear summation of

the hydrostatic and hydrodynamic stiffnesses, and the

damping is the same as in a hydrostatic bearing.

Mathematically and using intuitive explanations, the ability

to totally eliminate whirl instabilities was demonstrated, and

the special considerations for partially controlling whip

instabilities was shown.
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